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1 Introduction

The classical isoperimetric inequality in the Euclidean
planeR2 states that for a simple closed curve γ of length
L, enclosing a region of area A, one gets

L2 − 4πA ≥ 0, (1.1)

and the equality holds if and only if γ is a circle. This
fact was known to the ancient Greeks, the first complete
mathematical proof was only given in 1882 by Edler[4]
(based on the arguments of Steiner[15]). There are var-
ious proofs, sharpened forms and generalizations of this
inequality.

In 1995, Howard & Treibergs [7] gives a reverse isoperi-
metric inequality for the plane curves under some as-
sumption on curvature. In Pan & Zhang [13], we have
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gotten a reverse isoperimetric inequality

L2 ≤ 4π(A + |Ã|), (1.2)

where Ã denotes the oriented area of the domain en-
closed by the locus of curvature centers of γ, and the
equality holds if and only if γ is a circle.

In this presentation, we state a new reverse isoperi-
metric inequality for convex curves, which states that if
γ is a closed strictly convex curve in the plane R2 with
length L and enclosing an area A, then we get

L2 ≤ 4πA + 2π|Ã|, (1.3)

where Ã denotes the oriented area of the domain en-
closed by the locus of curvature centers of γ, and the
equality holds if and only if γ is a circle.
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2 Minkowski’s Support function for Con-
vex Plane Curves

From now on, without loss of generality, suppose that
γ is a smooth regular positively oriented and closed
strictly convex curve in the plane. Take a point O in-
side γ as the origin of our frame. Let p be the oriented
perpendicular distance from O to the tangent line at a
point on γ, and θ the oriented angle from the positive
x1-axis to this perpendicular ray. Clearly, p is a single-
valued periodic function of θ with period 2π and γ can
be parameterized in terms of θ and p(θ) as follows

γ(θ) =
(
γ1(θ), γ2(θ)

)

=
(
p(θ) cos θ − p′(θ) sin θ, p(θ) sin θ + p′(θ) cos θ

)
,

(2.1)
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(see for instance [8]). The couple (θ, p(θ)) is usually
called the polar tangential coordinate on γ, and p(θ)
its Minkowski’s support function.

Then, the curvature k of γ can be calculated according
to k(θ) = dθ

ds = 1
p(θ)+p′′(θ) > 0, or equivalently, the radius

of curvature ρ of γ is given by

ρ(θ) =
ds

dθ
= p(θ) + p′′(θ). (2.2)

Denote L and A the length of γ and the area it
bounds, respectively. Then one can get

L =

∫

γ

ds =

∫ 2π

0

ρ(θ)dθ

=

∫ 2π

0

p(θ)dθ, (2.3)
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and

A =
1

2

∫

γ

p(θ)ds

=
1

2

∫ 2π

0

[
p2(θ)− p′2(θ)

]
dθ. (2.4)

(2.3) and (2.4) are known as Cauchy’s formula and
Blaschke’s formula, respectively.

3 Some Properties of the Locus of Cur-
vature Centers

We now turn to studying the properties of the locus of
curvature centers of a closed strictly convex plane curve
γ which is given by (2.1). Let β represent the locus of
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centers of curvature of γ. Then β(θ) =
(
β1(θ), β2(θ)

)
can be given by

β(θ) = γ(θ)− ρ(θ)N(θ)

=
(− p′(θ) sin θ − p′′(θ) cos θ,

p′(θ) cos θ − p′′(θ) sin θ
)
, (3.1)

where N(θ) = (cos θ, sin θ) is the unit outward normal
vector field along γ.

Proposition 3.1. The oriented area of the domain
enclosed by β is nonpositive. And moreover, if β is
simple, then the orientation of β is the reverse di-
rection against that of the original curve γ and the
total curvature of β is equal to −2π.
Proof. To get the claimed results, we calculate the
oriented area, denoted by Ã, of β by Green’s formula.
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From (3.1), we get

β1dβ2 − β2dβ1 = p′(θ)
(
p′(θ) + p′′′(θ)

)
dθ,

and thus Ã is given by

Ã =
1

2

∫

γ

β1dβ2 − β2dβ1 =
1

2

∫ 2π

0

p′(θ)
(
p′(θ) + p′′′

)
dθ

=
1

2

∫ 2π

0

(
p′2(θ)− p′′2

)
dθ. (3.2)

Using the Wirtinger inequality for 2π−periodic C2 real
functions gives us Ã ≤ 0. If β is simple, then, from
Green’s formula and the fact that Ã ≤ 0, it follows
that the orientation of β is the reverse direction against
that of γ and the total curvature of β is equal to−2π. 2
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The following result is essential to the proof of the
main result of this note.

Proposition 3.2. Let γ be a C2 closed and strictly
convex curve in the plane, ρ the radius of curvature
of γ, A the area enclosed by γ and Ã the oriented
area enclosed by β. Then we have

∫ 2π

0

ρ2dθ = 2(A + |Ã|). (3.3)

Proof. From (2.2), we have p′′ = ρ− p, and thus,

p′′2 = ρ2−2pρ+p2 = ρ2−2p(p+p′′)+p2 = ρ2−2pp′′−p2.
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Now, according to (3.2), |Ã| can be rewritten as

|Ã| =
1

2

∫ 2π

0

(ρ2 − 2pp′′ − p2 − p′2)dθ

=
1

2

∫ 2π

0

ρ2 −
∫ 2π

0

pp′′dθ − 1

2

∫ 2π

0

(p2 + p′2)dθ

=
1

2

∫ 2π

0

ρ2dθ − pp′|2π0 +

∫ 2π

0

p′2dθ

−1

2

∫ 2π

0

(p2 + p′2)dθ

=
1

2

∫ 2π

0

ρ2dθ +
1

2

∫ 2π

0

(p′2 − p2)dθ

=
1

2

∫ 2π

0

ρ2dθ − A,
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which completes the proof. 2

We remark that the equality (3.3) is new, and it would
be interesting to find a similar formula for higher dimen-
sional convex surfaces.

4 The Unit-speed Outward Normal Flow

Let γ(θ, t) be a family of closed convex plane curves
with initial curve γ0(θ). In this case, the first author
of the present paper has shown in [12] that the tangent
vector field T and the unit outward normal vector field
N are independent of the time t. And thus the evolution
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problem in question can be expressed as follows



∂γ(θ, t)

∂t
= N(θ)

γ(θ, 0) = γ0(θ).
(4.1)

Lemma 4.1. Under the evolution defined by (4.1), let
γ(θ, t) be the curve at time t ≥ 0, we have the following
formulas:

ρ(θ, t) = ρ(θ, 0) + t; (4.2)

k(θ, t) =
k(θ, 0)

1 + k(θ, 0)t
; (4.3)

L(t) = L(0) + 2πt; (4.4)

A(t) = A(0) + L(0)t + πt2, (4.5)

where ρ(θ, t) and k(θ, t) are the radius of curvature and
the curvature, L(t) and A(t) are the length of the evolv-
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ing curve and the area it encloses at time t, respectively.
2

(4.5) is usually called the Steiner polynomial for the
evolving curve. It is easy to check that the isoperimetric
defect L2−2πA of the evolving curve is invariant under
the unit-speed outward normal follow.

5 A New Isoperimetric Inequality

Theorem 3.1 For a C2 closed and strictly convex
curve γ, L and A are the length of γ and the area it
encloses, one gets

∫ 2π

0

ρ2(θ)dθ ≥ L2 − 2πA

π
(5.1)
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And moreover, the equality in (5.1) holds if and only if
γ is a circle.
Proof. It is obvious that the equality in (5.1) holds
when γ is a circle. If we can prove that

∫ 2π

0

ρ2(θ)dθ >
L2 − 2πA

π

when γ is not a circle, then the result holds. This can
be concluded by proving the following theorem.

Theorem 5.2 If γ is a C2 closed strictly convex and
non-circular curve in the plane, then

∫ 2π

0

ρ2(θ)dθ >
L2 − 2πA

π
(5.2)

holds.
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To prove Theorem 5.2, we need some definitions.

Definition 5.3 Let t1 ≥ t2 be the roots of the Steiner
polynomial A(t), ri and re be the radii of the largest
inscribed and the smallest circumscribed circles of γ
(called the inradius and the outradius of γ), respec-
tively. Let k be the curvature of γ , ρ = 1

k the radius
of curvature , and ρmax and ρmin the maximum and the
minimum values of ρ. These quantities are all equal if
the curve γ is a circle.

Lemma 5.4 If γ is convex and non-circle, then

−ρmax < t2 < −re < − L

2π
< −ri < t1 < −ρmin.

(5.3)
Proof. See Green and Osher [6].
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Definition 5.5 Consider

sup{
∫

I

ρ(θ)dθ|I ⊂ S1,

∫

I

dθ = π}.

Let I1 denote a subset of S1 of measure π realizing this
bound , and let I2 be its complement. There exists a
real number a such that

I1 ⊆ {θ|ρ(θ) ≥ a}, I2 ⊆ {θ|ρ(θ) ≤ a}.
We set

ρ1 =
1

π

∫

I1

ρ(θ)dθ, ρ2 =
1

π

∫

I2

ρ(θ)dθ,

Note that

ρ1 + ρ2 =
L

π
, ρ1 ≥ ρ2.
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Proposition 5.6 Let γ be a strictly convex curve, if
it is not a circle, then

ρ1 > ρ2.

In other words, there exists a real number b > 0 such
that

ρ1 =
L

2π
+ b, ρ2 =

L

2π
− b.

Proposition 5.7 For γ a symmetric strictly convex
curve and not a circle, then

ρ1 > −t2.

Proposition 5.8 For γ a strictly convex curve and
not a circle, then

ρ1 > −t2.
The following two elementary lemmata have appeared

in Green and Osher [6],we omitted their proofs here.
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Lemma 5.9 Let F (x) be a convex function on (0, +∞),
then

1

2π

∫

S1
F (ρ(θ))dθ ≥ 1

2
[F (ρ1) + F (ρ2].

Lemma 5.10 If F (x) is strictly convex on (0, +∞)
,then for b > a > 0 and c arbitrary, one gets

F (c− a) + F (c + a) < F (c− b) + F (c + b).
2

Proof of Theorem 5.2. We already have that

1

2π

∫

S1
F (ρ(θ))dθ ≥ 1

2
[F (ρ1) + F (ρ2)],
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Now

ρ1 =
L

2π
+ b, ρ2 =

L

2π
− b,

−t1 =
L

2π
− u, −t2 =

L

2π
+ u.

By Proposition 5.8, b > u > 0, and so by Lemma 5.10,

F (ρ1) + F (ρ2) > F (−t1) + F (−t2). (5.4)

Takeing F (x) = x2and using Lemma 5.9 we get

1

2π

∫ 2π

0

ρ2(θ)dθ ≥ 1

2
(ρ2

1 + ρ2
2).

The above inequality (5.4) is

ρ2
1 + ρ2

2 > t21 + t22,
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and t1, t2 are the roots of A(t) = πt2+Lt+A = 0.Thus

t21 + t22 =
L2 − 2πA

π2
.

All the results indicate that∫ 2π

0

ρ2(θ)dθ >
L2 − 2πA

π
.

This proves the theorem. 2

Theorem 5.11. (A New Reverse Isoperimet-
ric Inequality) If γ is a closed strictly convex plane
curve with length L and enclosing an area A, let Ã
denote the oriented area bounded by its locus of cen-
ters of curvature, then we get

L2 ≤ 4πA + 2π|Ã|, (5.5)
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where the equality holds if and only if γ is a circle. 2

The following corollary is a direct consequence of the
classical isoperimetric inequality (1.1) and our reverse
isoperimetric inequality (5.5).

Corollary 5.12. Let β be the locus of curvature cen-
ters of a closed strictly convex plane curve γ. Then
the oriented area Ã of β is zero if and only if γ is
a circle and thus β is a point which is the center of
γ. 2

6 Final Remarks

It should be pointed out that the above reverse isoperi-
metric inequalities (1.2) and (1.3) are obtained by the
integration of the radius of curvature, our curves must
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be strictly convex. We wonder if this sort of inequalities
can be obtained for any (simple) closed plane curves.
And furthermore, it would be interesting to generalize
these inequalities to higher dimensional spaces.

Another problem is that if there is a best constant C
such that

L2 ≤ 4πA + C|Ã|, (6.1)

where the equality holds if and only if γ is a circle.
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